Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering,

♦ Department of Electronics & Telecommunication Engineering ♦

Student Information Manual (SIM)

Academic Year 2022-23 (Sem.-I)

Student Information Manual (SIM)

- Index
 - 1. Institute Information
 - 2. Vision of Institute
 - Mission of Institute

Quality Policy

- Vision of Department Mission of Department Programme Educational Objectives (PEO's) Programme Outcomes (PO's)
- 4. Students role Responsibilities: Code-of-Conduct:
- 5. Laboratory and Classroom Instructions Laboratory instructions: Classroom instructions:
- 6. Department Academic Planner
- 7. Departmental time table
- 8. Structure of Syllabus
- 9. Sub 1 Course details/syllabus
 - Recommended Books Teaching Plan
 - List of Experiment
 - Assignments
- 10. Project/Seminar Review Form Rubrics for Project Work assessment
- 11. Department Faculty
- 12. Department Staff
- 13. Activity Record

(Counseling, co/extracurricular, leave)

JJMCOE-SY ETC DEPT 2021-23

1. Institute Information

Dr J J Magdum College of Engineering was established by Dr. J. J. Magdum Trust, Jaysingpur in the year 1992 with an objective to promote the cause of higher education. The institute is approved by All India Council of Technical Education (AICTE), New Delhi and Government of Maharashtra, affiliated to Shivaji University, Kolhapur. The college offers B. Tech program in Mechanical, Civil, Computer Science Engineering, Electronics & Tele-Communication, Information Technology and M. Tech program in Civil Engineering-Construction Management.

Our Management extends its fullest support in building the institution as a center of excellence with technically superior, ethically strong and competent engineers. The serene campus vibrant with aesthetic bliss in an exhilarating convenient location, well connected by road, rail and air is easily accessible. The eco-friendly ambience creates and bestows a healthy learning atmosphere.

The institution is meticulous with modern laboratory, workshop facilities and state of art computer center providing an excellent infrastructure.

The institution has spacious library with vast collection of Books, Newspapers, National & International Journals, Magazines, and Reference books, Encyclopedia, World of science, ASM hand books and course materials. E-learning through NPTEL Video course by NIT and IIT Professors are available.

The Teaching and Non-Teaching Staff of the institute is a blend of senior experienced and young dynamic faculty members devoted to the noble cause of education. Qualified, experienced, versatile and efficient faculty members mould the students diligently in ethical, moral and academic aspects.

We imparts technology based experiential learning through industry visits, live projects, expert talks, MOOC's, workshops, case studies, upscale labs, and virtual classroom sessions.

Industry-Institute interaction and real-time projects nurture and craft the budding engineers to bloom and flourish in the field with the prowess guidance in the campus. The college equips the students with the latest skills which make them employable and future ready.

Due to able and proper guidance and motivation, many of our students have topped at University. Our training and placement works meticulously to improve and develop life skills to the students and tries hard to seek good jobs for our students. In addition to the academics, the students are engaged in sports and cultural activities which helps them to develop versatile personality. Various Club activities are conducted to encourage, motivate and inspire students from diverse culture to harness the talent through their perseverance.

The institute is having specious ground and the modern facilities for both indoor and outdoor games and ultra-modern Gymnasium. Due to proper guidance and motivation, many of our students have grabbed prizes at University level and different sport events.

We are committed to stakeholders for best results and produced more than 10000+ engineers getting campus placements.

2. VISION

To be a leading academic organization, creating skilled and Ethical Human Resource by leveraging Technical Education for Sustainable Development of Society.

MISSION

To promote learnability of all among stakeholders.

To empower rural youth to be competent in technical education and imbibe ethical values.

To contribute local social and economic context, leading to satisfied stakeholders.

VALUES (TIIE)

Transparency

Integrity

Inclusivity

Empathy

QUALITY POLICY

We strive for continual improvement in our performance through methodical academic monitoring, student participation and use of innovative teaching-learning process.

3. DEPARTMENT VISION

To be a most preferred department delivering modern learning methodologies to transform the students into knowledgeable and skilled ETC graduates with ethical behavior.

MISSION

- To provide high quality technical education and develop a person with sound footing on basic engineering principles.
- To utilize technical and managerial skills, innovative research capabilities for exemplary professional conduct.
- To lead and to use technology for the progress of mankind.
- To adopt themselves to changing technological environment with highest ethical values as inner strength.

WE ARE COMMITTED TO

- Provide Learning ambience using ICT, open source teaching.
- Offer continuing education programs to fulfill the needs of Industry & Community.
- Establish sustainable relation with parents & alumni.
- Offer globally accepted certification programmes in field of Electronics Engineering.

CORE VALUES

- Faculty & staff development.
- Transparency
- Equity

JJMCOE-SY ETC DEPT 2021-23

Program Educational Objectives (PEO)

PEO1:

Graduate will enrich for knowledge of Electronics and Telecommunication Engineering.

PEO2:

Graduate will have enough knowledge to analyze, design, experiment, simulate and evaluate system performance in Electronics and Telecommunication Engineering.

PEO3:

Graduate will inherit good scientific and engineering breadth particularly in analog and digital circuits; electronics communication, programming knowledge, embedded system, and industry automation, so as to comprehend analyze, design and create novel product and solutions for real life problems.

PEO4:

Graduate should inculcate high ethical standards, strong sense of professionalism viz. effective communication skill, team work, and multidisciplinary projects in global and social context

PEO5:

Graduates will have a platform to identify and meet challenges of Electronics and Telecommunication which will encourage them for higher education, research and development.

Program Outcomes (POs)

At the end of successful completion of program, the graduates will be able to,

- 1. Engineering Knowledge: Apply knowledge of mathematics, science, engineering Fundamentals and an engineering specialization to the solution of complex engineering.
- 2. Problem Analysis: Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental
- 4. Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid
- 5. Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under-standing of the limitations.
- 6. The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering
- 7. Environment and Sustainability: Understand and the impact of professional engineering solutions in societal and environmental contexts and demonstrates knowledge of and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering
- 9. Individual and Teamwork: Function effectively as in visual, and as a member or leader in diverse teams and in multidisciplinary s
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear
- 11. Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these too noels on work, as a member and leader instead, to manage projects and in multidisciplinary environment
- 12. Lifelong Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological.

PSO's

Graduate can be able to,

1. Apply their integrated knowledge of Digital Communication and Image Processing to suggest the technical solutions to the problems related with digital communication using simulation tools.

JJMCOE-SY ETC DEPT 2021-23

2. Implement the successfully simulated optimum solutions in hardware using modern tools and test those for the designed specifications.

4. <u>Students role and Responsibilities</u>

Code of Conduct:-

- Every student must carry his/her identity card while being present on the College Premises.
- ➤ Use of Cell phones is strictly prohibited during class/Labs hour.
- Without the permission of the Principal, Students are not allowed to circulate any printed materials within the college campus.
- Every student is expected to maintain the general cleanliness within the classrooms, laboratories and the campus in general.
- Students should handle the college properties with care. Damage to the furniture or any other materials may lead to penalty or suspension from the college.
- Intoxication or possession of narcotics and other dangerous material is strictly prohibited.
- Playing cards, spitting and loitering are strictly prohibited inside the college campus and shall invite severe punishment/disciplinary action
- Attempted or actual theft of and/or damage to property of the College, or property of a member of the College community, or other personal or public property, on or off campus will be considered as a punishable act.
- Every student will remain answerable to the college authority for his/her activity and conduct on the College Premises.
- ➤ Any act which obstructs teaching, research, administrative activity and other proceedings of the college is strictly prohibited.
- Indulging ragging, anti-institutional, anti-national, antisocial, communal, immoral or political expressions and activities within the Campus and hostel are strongly prohibited as well as punishable.
- Students are required to check the Notice Board and also website of the college for important announcements.

5. <u>Classroom Instructions:-</u>

- Students should know and obey rules and regulations of department as well as college.
- > Students strive to meet Academic Expectations.
- > Students are expected to take all tests at the scheduled times seriously.
- Maintain discipline in the class.
- A student should maintain at least 75% attendance in the Lectures of every subject and 100% overall performance. Otherwise, he or she will be debarred from the University Examination.
- > Latecomers will not be entertained to enter into the classroom.
- > Participate in the activities organized in the Department as well as in the College.
- While discussion, students should conduct and express themselves in a way that is respectful of all persons.
- > Develop positive attitudes
- Be cooperative and considerate.
- ➢ Welcome challenges.
- Be helpful to others
- > Be kind, polite, and courteous to others.
- Do the assigned work on time.
- > Be prepared for classes with all necessary supplies.
- Be Respectful and Punctual.
- \succ Be in the best of behaviors.

Computer Lab Instructions:

- Students must present a valid ID card before entering the computer lab.
- Remove your shoes/chapels/sandals outside the lab.
- Playing of games on computer in the lab is strictly prohibited.
- Before leaving the lab, students must close all programs positively and keep the desktop blank.
- Students are strictly prohibited from modifying or deleting any important files and install any software or settings in the computer without permission
- Based on the prime priority, users may be requested by the lab in-charge, to leave the workstation any time and the compliance is a must.
- Eating and/or drinking inside the computer lab is strictly prohibited.
- Internet facility is only for educational/ study purpose.
- Silence must be maintained in the lab at all times.
- The lab must be kept clean and tidy at all times.
- If any problem arises, please bring the same to the notice of lab in-charge.

JJMCOE-SY ETC DEPT 2021-23

- No bags/ hand bags/ rain coats/ casual wears will be allowed inside the computer lab, however note book may be allowed.
- Lab timing will be as per the academic time table of different classes.
- Every user must make an entry in the Computer Lab Register properly.
- Each student or visitor must take mobile phones in "Switched Off" mode while entering and or working in Computer Lab.
- Conversation, discussion, loud talking & sleeping are strictly prohibited.
- Users must turn-off the computer before leaving the computer lab.
- Maintain silence in lab.
- Computer Lab Assistants are available to assist with BASIC computer and software problems.
- Food and drink are not permitted in the computer lab.
- The use of cell phones is prohibited in the computer lab.
- Please take your calls outside. We also ask that you put your cell phone on vibrate mode.
- Unauthorized copying and/or installing of unauthorized software is not permitted.
- Tampering with the hardware or software settings will not be tolerated.
- Students found Internet surfing or chatting for personal reasons may be asked to leave. Preference is given to students doing course work over those engaged in personal computer use.
- Personal files are not to be stored on the local drive C. Students are responsible for providing their own means of digital storage. All lab computers are set up to remove any data stored or any programs installed by users.

6. Academic Planner 2021-22 (Semester II)

ACADEMIC CALENDAR FOR YEAR 2022-23

SEMESTER I

August 2022

Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24 Commencement of Theory lectures for SY / TY/ Final Year	25	26	27
28	29	30	31 Ganesh chaturthi			

September 2022

Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1	2	3
4	5 Teachers Day	6 Workshop for students	7 Workshop for students	8 Workshop for students	9	10

JJMCOE-SY ETC DEPT 2021-23

11	12	13	14	15 Engineers day	16	17
18	19	20	21	22 DRC Meeting	23 Field Training presenta tion for final year	<mark>24</mark> NSS Day
25	26 Proctor meeting	27	28 ECESA activity	<i>29</i> Expert lecture	30 CMC meeting	

October 2022

Sun	Mon	Tue	Wed	Thu	Fri	Sat
						<i>l</i> Industrial visit for Btech <i>Commence</i> <i>ment of</i> <i>Value</i> <i>added</i> <i>course</i>
2	3	4	5 Dasara	6 CIE-1	7 CIE-1	8
9	10	11	12	13	14 BTech Synopsis Presentat ion	15 ECESA activity
16	17	18	19	20 Expert lecture	21 Augment ation Program	22

2	23	24 Diwali	25 Diwali	26 Diwali	27	28 Proctor meeting	29 Industrial visit for TY
Ē	30	31 CMC meeting					

November 2022

Sun	Mon	Tue	Wed	Thu	Fri	Sat
		1	2	3	4 FDP- Webinar for Teaching (ETC)	5 Parents Meet
6	7 Alumni Interaction	8	9	10	11	12
13	14	15 Augmentat ion Program	16	17	18 Second assessme nt of project	19 Industrial visit for SY
20	21 CIE-II	22 CIE-II	23	24 Expert lecture	25 Proctor meeting	26
27	28 Advisory Board meeting	29	30 CMC meeting			

December 2023

S	un	Mon	Tue	Wed	Thu	Fri	Sat
---	----	-----	-----	-----	-----	-----	-----

JJMCOE-SY ETC DEPT 2021-23

				1	2	3 Expert lecture
4	5 Tentative Final submissio n for SY/TY/Fi nal Year	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	2	122	23	24
25	26	27	28	29	30	31

7. Departmental Time-Table

Academic Year: 2022-23 Department: Electronics & Telecommunication Engineering Revision:

Class: SY Class Room No.: 103 W.e.f.: 28/03/2022

Semester: II

Class Coordinator: Prof. Sutar A. A.

TIME	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
09.30 am –	E1-ECD-I (MUP)	E1- ACOM	E1- TAM (MMK)	E1-M3 (MRN)/	E1-PL-I (SRM)	NA(AA
10.30 am	E2-ACOM (THM)	(THM)	E2- (M3 (MRN)	NA (MMK)	E2-ECD-I(MUP)	S)
10.30 am – 11.30 am	E3-TAM (VTK) E4-M3 (MRN) / NA (AAS)	E2-TAM (DUC) E3- M3 (MRN) / NA (AAS) E4-PL-I (SRM)	/ NA (AAS) E3-PL-I (SRM) E4-PL-I (SRM))	E2- PL-I (SRM) E3- ECD-I (MUP) E4- ACOM (THM)	E3-ACOM(THM) E4- TAM (RVK)	NA (AAS)
11.30 am – 11.40 am			Short Break			
11.40 am – 12.40 pm	M3 (MRN)	ECD-I (MUP)	ACOM(THM)	ES (PAC)	M3 (MRN)	
12.40 pm – 01.40 pm	PL—I (SRM)	M3 (MRN)	NA (AAS)	NA (AAS)	ACOM(THM)	
01.40 pm – 02.30 pm			Lunch Break	ζ		
02.30 pm – 03.30 pm	TAM (VTK)	TAM (VTK)	ECD-I (MUP)	PL—I (SRM)	TAM (VTK)	
03.30 pm – 04.30 pm	ACOM (THM)	NA (AAS)	ES (PAC)	ECD-I (PPB)	ECD-I (PPB)	

Name of Subject	Batches	Name of Faculty	NAME OF LAB
Name of Subject	Datches	Member	
Electronics Circuit Design-I	E4	Prof.P.P.Belagali	ANALOG ETRX
Electronics Circuit Design-I	E2,E3,E3	Prof.M U Phutane	ANALOG ETRX
Analog Communication	E2,E3,E3,E4	Prof.T.H.Mohite	ANALOG COMMUNICATION
Programming Language-I	E1,E2,E3,E4	Prof. S R Mahadik	PROGRAMMING LANGUAGE-II
Transducer and Measurement	E1	Prof. M M Kolap	MEASUREMENT AND POWER
Transducer and Measurement	E2	Prof.D U Chavan	MEASUREMENT AND POWER
Transducer and Measurement	E3	Prof. V T Kamble	MEASUREMENT AND POWER
Transducer and Measurement	E4	Prof. R V Kaulgud	
Network Analysis (TUT)	E1,E3	Prof. M M Kolap	
Network Analysis (TUT)	E3	Prof. S S Karadge	
Network Analysis (TUT)	E4	Prof. A A Sutar	
Engg Maths-III (TUT)	E1,E2,E3,E4	Prof.M R Naik	

8. Structure of Syllabus:

Class : SYETC

Semester III

Sr. No	Code No.	Subject	Semester	Credits
1	BSC-ETC301	Engineering Mathematics-III	3	4
2	PCC-ETC-301	Electronic Circuit Design-I	3	5
3	PCC-ETC302	Network Analysis	3	5
4	PCC-ETC303	Transducers and Measurement	3	4
5	PCC-ETC304	Analog Communication	3	4
6	PCC-ETC305	Programming Lab-I	3	3
7	MC-ETC-301	Environmental studies	3	3**
		Total		25

**over and above credit

Semester IV

Sr. No.	Code No.	Subject	Semester	Credits
1	PCC-ETC401	Electronic Circuit Design-II	4	5
2	PCC-ETC402	Linear integrated Circuits	4	5
3	PCC-ETC403	Control System Engineering	4	4
4	PCC-ETC404	Digital Communication	4	4
5	PCC-ETC405	Data Structures	4	4
6	PCC-ETC406	Programming Lab-II	4	3
		Total		25

Class : SYETC

	SEMESTER - III																							
					TEA	ACH	ING SCI	IEME						EXAMINATION SCHEME										
Sr	THEORY		THEORY			TUTORIAL			PRACTICAL				THEO			RY		PR	PRACTICAL			TERM WORK		
No	Course (Subject Title)	Credits	No. of Lecture	Hours		Credits	No. of Lecture	Hours		Credits	No. of Lecture	Hours		Hours	Mode	Marks	Total Marks	Min	Hours	Max	Min	Hours	Max	Min
1	BSC- ETC301	3	3	3		1	1	1	1	-	-				CIE ESE	30 70	100	40		-	-	2	25	10
2	PCC- ETC301	4	4	4		•	-		1	1	2	2			CIE ESE	30 70	100	40	lelines	50	20	2	25	10
3	PCC- ETC302	4	4	4		1	1	1		-	-	-			CIE ESE	30 70	100	40	Guid	-	-	2	25	10
4	PCC- ETC303	3	3	3		•	-			1	2	2			CIE ESE	30 70	100	40	As per BOS Guidelines			2	25	10
5	PCC- ETC304	3	3	3		•	-			1	2	2			CIE ESE	30 70	100	40	As pe	50	20	2	25	10
6	PCC- ETC305	2	2	2		•	-	-		1	2	2			•	-	-	-		50	20	2	25	10
	TOTAL	19	19	19		2	2	2		4	8	8					500			150			150	
											SEME	STER	-IV	·										
1	PCC- ETC401	4	4	4		•	-	•		1	2	2			CIE ESE	30 70	100	40		50	20	2	25	10
2	PCC- ETC402	4	4	4			-			1	2	2			CIE ESE	30 70	100	40		50	20	2	25	10
3	PCC-	3	3	3		1	1	1	ĺ				1		CIE	30	100	40	ideline			2	25	10
	ETC403 PCC-				-	_				<u> </u>			-		ESE CIE	70 30			Gui					
4	ETC404	3	3	3		-	-	•		1	2	2			ESE	70	100	40	BO	-	-	2	25	10
5	PCC- ETC405	3	3	3		1	1	1		-	-				CIE ESE	30 70	100	40	As per BOS Guidelines	-	-	2	25	10
6	PCC- ETC406	2	2	2			-			1	2	2]							50	20	2	25	10
7	MC-ETC			-						-	-				CIE	30	100	10		-	-		-	
	TOTAL	10	10	10			•	1			0	0			ESE	70	(00	30		150			150	
	TOTAL	19	19	19		2	2	2		4	8	8					600			150			150	
	TOTAL	38	38	38		4	4	4		8	16	16					1100			300			300	

Semester Examination

CIE- Continuous Internal Evaluation.

ESE – End Semester Examination

JJMCOE-SY ETC DEPT 2021-23

<u>SY ETC</u>

9. Subject Details

Subject: Engineering Mathematics-III

Chapter	Lect	Details of syllabus planned							
No.	No.								
	Unit N	No.:- 1. Linear Differential Equations with Constant Coefficients and its Applications.							
	01	Introduction.							
	02	Calculations for C.F.							
	03	Examples.							
Ch.1	04	To find P.IExponential, Trigonometry (<i>i.e.</i> , e^{ax} , $sinax/cosax$)							
	05	To find P.I x^m , $e^{ax}x^m$, e^{ax} sinax, e^{ax} cosax							
	06	Homogenous Linear Differential Equations –Examples.							
	07	Examples.							
	08	Applications to Electrical Engg. Problems.							
	09	Examples.							
	Unit No.2 Vector Differential Calculus								
	10	Revision of Vector Calculus							
	11	Differentiation of vectors							
Ch.2	12	Gradient of scalar point function							
CII.2	13	Directional derivatives -Examples							
	14	Divergence of vector point function							
	15	Solenoidal vector Field -Examples.							
	16	Curl of vector point function & irrotational vector field							
Ch.3		Unit No. 3. Introduction to Fuzzy sets							

JJMCOE-SY ETC DEPT 2021-23

	38	Definition, Introduction, Random Variables, Types	
	20	Unit No. 6. Probability Distributions	
	37	Application of L.D.E. with const. Coefficient	
	36	Convolution theorem & Examples.	
	35	Partial fraction method, Examples	
	34	Inverse Laplace Transform	
Ch.5	33	Transform of derivatives & integration Examples	
	32	Properties of Laplace transform	
	31	Laplace Transform – Definition, Examples,	
		Unit No 5:- Laplace Transform and its Applications.	
	30	Half range cosine series – Examples	
	29	Half range sine series– Examples	
	28	Expansion of Even functions - Examples	
~ 11, T	27	Expansion of odd functions - Examples	
Ch.4	26	Change of interval, Examples	
	25	Function giving points of discontinuity, Examples	
	24	Fourier series Introduction & Definition	
		Unit No.:- 4.Fourier Series	
	23	Examples	
	22	Properties of fuzzy sets.	
	21	Examples	
	20	Basic operations on fuzzy sets	
	19	Examples	
	18	Basic concepts of fuzzy sets	
	17	Crisp set and Fuzzy set.	

JJMCOE-SY ETC DEPT 2021-23

	39	Probability mass function, Distributions
	40	Probability density function
	41	Binomial Distribution & Examples
Ch.6	42	Poisson Distributions & Examples
	43	Normal Distribution & Examples
	44	Examples

Recommended Books:

TEXT BOOKS:

01 Higher Engineering Mathematics, by B. S. Grewal (Khanna Publication Delhi.)

02 Applied Mathematics Wartikar P N and Wartikar J N , (Pune Vidyarthi Grah Prakashsn)

REFERENCE BOOKS:

01 Advance Engineering Mathematics by Erwin Kreyszig (Wiley India.)

02 Mathematical Methods of Science and Engineering, by Kanti B. Datta (Cengage Learning.)

03 Advanced Engineering Mathematics, 3e, by Jack Goldberg (Oxford University Press.)

04 Engineering Mathematics by V. Sundaram (Vikas Publication.)

05 Higher Engineering Mathematics, by B. S. Grewal (Khanna Publication Delhi.)

06 Higher Engineering Mathematics, by B. V. Ramana (Tata McGraw-Hill)

07 Advanced Engineering Mathematics, by H. K. Das (S. Chand Publication.)

08 Fuzzy Sets and Fuzzy Logic: Theory and Applications, by George J. Klir and Bo Yuan (Prentice Hall of India Private Limited.)

09 Applied Mathematics by Navneet D. Sangle (Cengage Publication)

General Instructions:

1) For the term work of 25 marks, batch wise tutorials are to be conducted. The number of students per batch per tutorial should be as per University rules.

2)Number of assignments should be at least six (All units should be covered).

JJMCOE-SY ETC DEPT 2021-23

Subject: Electronic Circuit Design-I

Class: S.Y. ETC.

Year: 2022-23

Sub:- ECAD-I

Lecture:2/week

Faculty Name: Prof. Mrs.Phutane M.U.

Lecture No.	Content Of Lecture						
110.	UNIT 4						
1.	Introduction to BJT						
2.	Need of Biasing ,Stability factor						
3.	Biasing of CE Configuration-Fixed Bias						
4.	Collector to Base Bias						
5.	Voltage Divider Bias (Analysis & Design)						
6.	FET: Introduction to JFET						
7.	Biasing of CS configuration-Fixed Bias						
8.	Self Bias (Analysis of the same).						
	UNIT 5						
9.	H – Parameters						
10.	Hybrid model for transistor CE Configuration						
11.	Hybrid model for transistor CB Configuration						
12.	Hybrid model for transistor CC Configuration						
13.	CE Amplifier equations for Voltage Gain						
14.	Current gain, Input resistance						
15.	Output resistance taking Rs of source into account						
16.	Analyticals						
	UNIT 6						
17.	Low frequency response: Effect of Coupling capacitor(CC) & Emitter bypass capacitor(CE)						
18.	High frequency response: Hybrid π model						
19.	Derivation for CE short circuit						
20.	resistive Current gain						
21.	β cutoff, α cutoff frequency						
22.	amplifier high freq. response to square wave						
23.	gain bandwidth product, (Numerical are expected).						
24.	Design of single stage RC coupled amplifier.						

JJMCOE-SY ETC DEPT 2021-23

Subject: Network Analysis

Chapter	Lect	t Details of syllabus planned						
No.	No.							
		Network Fundamentals:						
	1	Network Elements & its types, Energy sources,						
	2	KVL & KCL, series & parallel connection of passive elements(R,L,C),						
	3	KVL & KCL, series & parallel connection of passive elements(R,L,C),						
	4	Combination of energy sources						
	5	Current Division & Voltage division, source transformation,						
	6	StarDelta transformation, Mesh & Super mesh analysis, Node & super node analysis						
	7	Graph Theory: graph of network & its parts,						
	8	Tree & co-tree, incidence matrix, Tie Set matrix, cut sets						
		Network Theorems:						
	9	Superposition Theorem,						
	10	Thevenin's Theorem,						
	11	Norton's Theorem,						
	12	Maximum Power Transfer Theorem,						
	13	Reciprocity Theorem,						
	14	Compensation theorem,						
	15	Duality theorem,						
	16	Millman's Theorem						
<u> </u>		Resonance						
	17	Definition, Types: series & parallel resonance,						
	18	Series resonance-resonant frequency, variation of impedance,						
	19	Admittance, current & voltage across L & C with respect to. Frequency,						

JJMCOE-SY ETC DEPT 2021-23

20	Effect of resistance on frequency response, Selectivity, B.W. & Quality factor.
21	Parallel resonance-Ant resonance frequency,
22	Resonant frequency for a tank circuit, variation of impedance & admittance with frequency, Selectivity,
23	Quality factor. & B.W.
24	Comparison of series and parallel resonant circuits.
Two	Port Network & Network Functions:
25	Two port network: Z, Y, ABCD, h parameters,
26	Interrelation of different parameters,
27	Interrelation of different parameters,
28	Interconnections of port network (Series, Parallel, Cascaded, SeriesParallel)
29	Network functions for one port & two port networks,
30	Driving point impedance and admittance of one port network, Driving point impedance & admittance function
31	Transfer function Concept of complex frequency, significance of poles & zeros. Restrictions on poles& zeros for transfer& drawing point's function,
32	Stability of circuit using Routh criterion, Pole zero diagram, Time response from pole zero plot.
Filter	
33	Definitions,
34	classification & characteristics of different filters
35	decibel & Neper
36	Filter fundamental such as attenuation constant (α),
37	phase $shift(\beta)$
38	propagation constant (γ)
39	characteristic impedance(Zo)
40	Design & analysis of constant K, M derived (low pass, high pass, band pass & band stop filters): T & Pi sections.
Trans	sient Response
41	Network Solution using Laplace transforms
42	Initial Conditions of elements.
43	Initial Conditions of elements.
44	Steady state & transient response (Voltage & Current)
45	Steady state & transient response (Voltage & Current)
46	DC response of RL circuit
47	DC response of RC circuit

JJMCOE-SY ETC DEPT 2021-23

48

DC response of RLC circui

Tutorial List

-	
TutN	Name of Tutorial
0.	
01	Examples on KVL and KCL
02	Examples on Theoream
03	Examples on Resonance
04	Examples on Two port network
05	Interconnection of Two port network
06	Examples on Filter Design
07	Transient Response derivations
08	Examples on RLC network

Text Books:

1 A. Sudhakar ,ShyammohanS.Palli 'Circuit & Network – Analysis & Synthesis' IIIrd Edition – Tata McGraw Hill Publication

2 Ravish Singh, "Networks Analysis & Synthesis" Tata McGraw Hill Publication

3 A.Chakrabarti 'Circuit Theory (Analysis & Synthesis)' - IIIrd Edition DhanpatRai& co

4 William H Hayt, Jack E Kimmerly and Steven M.Durbin, Engineering Circuit Analysis, Tata McGraw Hill

Reference Books:

1 D. Roy Choudhury 'Networks & Systems' - New Age International Publisher

2 Soni Gupta 'Electrical Circuit Analysis' DhanpatRai& Co.

3 Boylestad 'Introductory Circuit Analysis – Universal book stall, New Delhi

 $4\ M.E.VanValkenburg\ `Network\ Analysis' - IIIrd\ Edition\ ,\ Pearson\ Education\ /\ PHI$

JJMCOE-SY ETC DEPT 2021-23

5 JoshephEdministrar 'Theory & Problems of Electronic Circuit (Schaum's series) - Tata

McGraw Hill, Publication

6~R.G. Kaduskar, S.O.Rajankar, T.S. Khatavkar, Network Fundamentals and Analysis – Wiley Indi

Chapter	No. of	Topics to be covered in each Lecture					
No	Lecture						
		Transducers & Sensors					
	1	definition and various types of transducers					
	2	Classifications of transducers					
	3	Selection factors and general applications of transducers					
1	4	Detail study of transducers					
	5	Types of sensors					
	6	Hall Effect Transducers, Digital Transducers: Shaft Encoder					
	7	Digital Resolver, Digital tachometer					
	Sensors						
	8	Proximity Sensors, optical Sensors					
	9	IR sensors, Piezo – electric sensors Smart Sensors: Fiber optic sensor					
2	10	Film sensors, Nano sensors, Electrochemical sensors					
	11	biosensors, MEMS					
	Signal Conditioning and Data Acquisition System						
	12	Introduction, AC & DC Signal Conditioning					
	13	Chopper Stabilized Amplifier, Instrumentation Amplifier					
_	14	Isolation and Programmable Gain Amplifier, Grounding and Shielding					
3	15	Principles and working of different types of ADC and					
	16	DAC					
	17	Instrumentation Techniques: Introduction to Process Instrumentation					
	18	Instrumentation set up for measurement of nonelectrical quantity such as weight using strain gauge					
		Introduction to Measurement					
	19	Introduction to Measurement. Performance Characteristics, Static Characteristics					
4	20	Error in Measurement, Types of Static Error. Sources of Error, Dynamic Characteristics					

Subject: Transducer and Measurement

JJMCOE-SY ETC DEPT 2021-23

		
	21	Statistical Analysis, Electrical Standards
	22	Atomic Frequency and Time Standards
	23	Graphical Representation of Measurements as a Distribution
	24	Digital voltmeters- Introduction, Types of DVM
		General specifications of DVM, digital multimeter, digital
	25	measurements of time Q meter, Instrument calibration
		Measurement & Display Devices
	26	CRO: Dual Beam, Dual trace
	27	Sampling, Digital Storage
	28	Measurement of Phase and frequency using Lissajaous pattern
5	29	CRO Probes: active, passive, current, attenuators
	30	Display Devices & Principle LED, LCD, and Graphics display
	31	Signal generators. Function Generators
	32	Spectrum analyser Logic analyser
		Bridges
	33	Measurement of Resistance with Bridges Wheatstone's Bridge
	34	Kelvin Double Bridge
6	35	AC Bridges such as Haye's Bridge, Wein Bridge
		Maxwell's-Wein Bridge, Maxwell' L/C Bridge Descourty's Bridge
	36	Bridge

ASSIGNMENT QUESTIONS/QUESTION BANK

Unit- I	Unit- I (Assignment 1) Transducers16 to 24 Marks							
Que. No.	Question	CO No.	Remark					
1.	Explain the important characteristics of a transducer.	PCC- ETC303.1						
2.	List different types of pressure transducers. Explain bellows in detail.Write the advantages and disadvantages	PCC- ETC303.1						
3.	List various types of flow transducer. Explain anyone.	PCC- ETC303.1						
4.	List different types of ultrasonic flow meter. Explain any one in detail.	PCC- ETC303.1	Common for All					
5.	List various types of sound transducer, with neat diagram explain any One sound transducer	PCC- ETC303.1						
6.	List different types of bourdon tubes explain it with the help of Principle, construction and working.	PCC- ETC303.1	-					
7.	Explain linear variable differential transformer. Write the advantages and Disadvantages.	PCC- ETC303.1						
8.	List General application of Transducers	PCC- ETC303.1	Additional questions					
9.	Compare Active and Passive Transducer	PCC- ETC303.1	for Fast Learner					
Unit-II Marks	: (Assignment 2) Sensors		16 to 24					
1.	Explain proximity sensors.	PCC- ETC303.1						
2.	Draw and explain block diagram of SMART Sensor	PCC- ETC303.1						
3.	Explain MEMS Sensor System	PCC- ETC303.1	Common for All					
4.	Explain fiber optics sensor	PCC- ETC303.1						
5.	Draw and explain IR Sensor	PCC- ETC303.1						
Unit-II	: (Assignment 3)Signal Conditioning & Data Acquis	ition System	16 to 24 Marks					
1.	Explain the diagram of Chopper stabilized amplifier. AlsoWrite the Advantages and disadvantages.	PCC- ETC303.2						
2.	Draw and explain block diagram of DAS	PCC- ETC303.2	Common for All					
3.	Explain AC Signal conditioning system	PCC- ETC303.2						

JJMCOE-SY ETC DEPT 2021-23

4.	What is DAC? Explain any one in detail	PCC- ETC303.2	
5.	Define Filter. Explain active filter.	PCC- ETC303.2	
6.	Explain DC Signal conditioning system.	PCC- ETC303.2	
7.	Explain the block schematic of successive approximation ADC. Write advantages and disadvantages.	PCC- ETC303.2	
8.	Explain the block schematic of parallel comparator ADC	PCC- ETC303.2	
9.	Explain the block schematic of Instrumentation system	PCC- ETC303.3	
10.	Explain Instrumentation set up for measurement of non-electrical quantity such as weight using strain gauge.	PCC- ETC303.3	
11.	Explain Instrumentation amplifier	PCC- ETC303.3	Additional question for Fast Learner

Unit- I	V:(Assignment 4) Introduction to Measureme	ent 16 t	o 24 Marks		
1.	With neat sketch explain working of successive approximation type digital Voltmeter.	PCC- ETC303.4			
2.	State general specifications of DVM.	PCC- ETC303.4			
3.	What is a standard? State and explain different types of standards depending on functions and applications.	PCC- ETC303.4	Common for All		
4.	With neat sketch explain working of Digital Multimeter.	PCC- ETC303.4			
5.	Explain various types and sources of Errors in measurement system.	PCC- ETC303.4			
6.	Explain working of Q-meter in detail.	PCC- ETC303.4			
7.	Explain Digital frequency meter.	PCC- ETC303.4	Additional question for Fast Learner		
Unit-V to24Ma	V: (Assignment 5)Measurement & Display Devices arks	16			
1.	Explain working of CRO with block schematic.	PCC- ETC303.4	Common for All		

JJMCOE-SY ETC DEPT 2021-23

2.	With block schematic explain Signal Generator.	PCC- ETC303.4		
3.	What is Attenuator? Explain types of Attenuators in	PCC-		
	detail.	ETC303.4		
4.	Explain in detail spectrum analyser	PCC- ETC303.4		
5.	With block Schematic explain function generator.	PCC- ETC303.4		
6.	Explain in detail Dual beam CRO	PCC- ETC303.4	Additional question for Fast Learner	
Unit_ V	Unit- VI: (Assignment 6)Bridges12to 18Marks			
	1. (Assignment 0) Druges		12t0 101/141 K5	
1.	Derive expression for Hay's Bridge.	PCC-		
	Derive expression for flags Dirage.	ETC303.4		
2.	Explain Descourty's Bridge.	PCC-	Common for All	
	Explain Descourty's Druge.	ETC303.4		
3.		PCC-		
5.	Explain Wheat Stones Bridge.	ETC303.4		
4.		PCC-		
т.	Obtain an expression for Kelvin's Bridge	ETC303.4		

Experiment List

Expt.No.	Name of Experiment
01	Measurement of wt using strain gauage
02	To study Resistance Temp.detector.
03	To study of temp. measurement using Thermistor
04	To study of temp. Measurement using Thermocouple.
05	To study of CRO & Measurement of Amplitude & Frequency
06	To study on measurement of frequency using Lissajous Pattern
07	To study of Function Generator
08	To study of Whetstones Bridge
09	To study of Smart Sensor

JJMCOE-SY ETC DEPT 2021-23

Text Books:

- 1. A course in Electrical, Electronics measurement and Instrumentation, A.K.Sawhney
- 2. Electronic Instrumentation, H. S. Kalsi, MGH, 3rd Edition S.Y.

Reference Books:

- 1. Electronic Instrumentation and Measurement Techniques, Welfrick Cooper.
- 2. Instrumentation for Engineers And Scientists, John Turner, II Edition, Wiley
- 3. Electronic Instrumentation and Measurements, David A Bell, Third Edition, Oxford
- 4. Instrumentation for Engineering Measurements, James W Dally, II Edition, Wiley
- 5. Sensors and Transducers, Patranabis D., PHI, 1999
- 6. Smart Sensors for Industrial Applications, Krzystof Iniewski, CRC press, Tailor & Francis
- 7. Introduction to electrochemical transducer, Brian R Eggins, Willey

LECTURE NO	CONTENTS		
1	Elements of electronic communication systems, Need for modulation, channel,		
2	Frequency spectrum, time and frequency domain signals,		
3	Amplitude Modulation principles, AM envelope		
4	frequency spectrum & BW, phase representation of AM wave		
5	Modulation index, % modulation (Numericals expected)		
6	AM modulating circuits: Low level AM modulation, medium power AM modulation		
7	AM transmitters: Block of low level DSBFC, High level DSBFC, Trapezoidal patterns		
8	Evolution and descriptions of SSB, Suppression of carrier using balanced modulator		
9	Suppression of unwanted sideband, Methods: Filter system phase shift & third method		
	Vestigial sideband(VSB)		
10	Instantaneous frequency, Concept of angle modulation		
11	Frequency spectrum		
12	Narrow band & Wide Band FM		
13	Modulation Index, Bandwidth		
14	Phase modulation		
15	Bessel,s Function and it,s mathematical Analysis		
16	Generation of FM Direct and Indirect Method		
17	Comparison of FM and PM		
18	Simplified block diagram of AM receiver		
19	Receiver parameters: Sensitivity, Selectivity, BW		
20	Dynamic range, Tracking, fidelity		
21	Types of AM receiver: TRF and super heterodyne (block diagram)		
22	AM detection types: using diode, practical diode detector		
23	Distortion in diode detector. Negative peak clipping & diagonal clipping		

Subject: Analog Communication

JJMCOE-SY ETC DEPT 2021-23

24	Demodulation of SSB using : product demodulator & diode balanced modulator
25	Automatic Gain Control (AGC)
26	Double conversion FM receivers
27	Block diagram, FM demodulator
28	Tuned circuit frequency discriminators
29	Slope detectors
30	Fosters seeley discriminator
31	Ratio detectors
32	PLL-FM demodulators FM noise suppression
33	Sources of noise, Types of noise
34	Introduction, Sampling theorem Occurance of allising error
35	Mathematical proof of sampling thm PAM: Channel BW for PAM, Natural Sampling
36	Flat-top Sampling, PAM & TDM Signal Recovery,; PWM: Uses of PWM

Text Books:

1 George Kennedy, "Electronic Communications", McGraw Hill Kennedy.

2 Wayne Tomasi 'Electronics Communication System' -Fundamentals through Advanced.-

Vth Edition- Pearson Education.

3 V. Chandra Sekar, "Analog Communication", OXFORD University press.

Reference Books:

1 B.P. Lathi, "Analog and Digital Communication", OXFORD University press.

2 Simon Haykin, "An introduction to analog & digital communications", John Wiley &

Sons

3 R P Singh, S D Sapre 'Communication System-Analog & Digital' IInd Edition – Tata Mc

Graw Hill Publication

4 Blake"Electronic Communication Systems", 2nd Edition CENGAGE learning

5 Louis E. Frenzel, "Principals of electronic communication system", IIIrd Ed., TMH Pub

Experiment list-

Sr. No.

Experiment List

JJMCOE-SY ETC DEPT 2021-23

1.	Implementation of Amplitude Modulation (AM).
2.	Implementation of AM using trapezoidal pattern for calculation of modulation index.
3.	Implementation of Amplitude Modulation – Demodulation.
4.	Implementation of Frequency Modulation (FM).
5.	Implementation of Frequency Modulation – Demodulation.
6.	Implementation of Sampling and reconstruction.
7.	Implementation of Pulse Amplitude Modulation(PAM).
8.	Implementation of Pulse Width Modulation(PWM).
9.	Implementation of Pulse Position Modulation(PPM).
10.	Implementation of Pulse Amplitude Modulation - Time Division Modulation (PAM-TDM).
11.	Implementation of Single Side Band(SSB).
12.	Visit Report of AM or FM station.

Assignments No.1

1. Draw and explain block diagram of analog communication.

2. Draw and explain classification of modulation.

3. Draw and explain AM for m=1,m>1,m<1,m=0.

Assignments No.2

JJMCOE-SY ETC DEPT 2021-23

1.Draw and explain FM,PM with modulation index.

- 2. Draw and explain Narrow band & Wide Band $F\!M$
- 3. Draw and explain Ratio detectors
- 4. Draw and explain Fosters seeley discriminator
- 5. Draw and explain PLL-FM demodulators

Assignments No.3

- 1. Draw and explain noise classification.
- 2. Draw and explain PAM, PWM, PPM.
- 3. Draw and explain Sampling and reconstruction

Chapter	Lect	Details of syllabus planned
No.	No.	
		Programming Fundamentals
	01	Flow chart, Algorithm, Standard notations, Selection Procedure
Ch.1	02	Loops, Sub Algorithms,
	03	Compilers, Interpreters,
	04	The Library and Linking, concept of Data Storage (Memory Concept)
		Introduction to C
	05	Introduction to Constants, Variables,
	06	Data Types,
Ch.2	07	Operators, Expressions,
	08	Structure of C Programming,
	09	Identifiers, Decision & Loop control statements
		Arrays and Structures

Subject: Programming Lab-I

JJMCOE-SY ETC DEPT 2021-23

Ch.3	10	Arrays::Introduction to 1-Dimensional arrays,	
	11	Declaration and Initialization of 1-Dimensional arrays, Declaration and Initialization of 2-Dimensional arrays,	
	12	Declaration and Initialization of MultiDimensional arrays.	
	13	Structures-Declaring of Structures, Accessing Structure elements, arrays of structures.	
		Functions and Pointers	
	14	Introduction of functions, Need for functions	
Ch.4	15	Multifunction Programming, Elements of functions,	
011.4		Definition and declaration of functions, return values and their types,	
	17	function call, arguments, return value, nesting and recursion Pointers- Introduction to pointers, pointer variables,	
	18	Declaration and initialization of pointer variable, accessing pointer	
	Strings		
Ch.5	19	Declaration and Initialization of string,	
CII.5	20	Reading from Terminal,	
	21	Writing to screen, Standard library string functions	
		File handling	
Ch.6	22	File operation, counting character tabs,	
	23	Spaces, file copy program, file opening modes,	
	24	Text file- binary file, Real time case study.	

Experiment List (Minimum 10+ project)

Tut no.	Name of Experiments	Status
01	Develop Program using decision control statements	Performing
02	Develop Program using control statements	Performing

JJMCOE-SY ETC DEPT 2021-23

03	Develop Program using loop control statements	Performing
04	Develop Program using functions	Performing
05	Develop Program using pointers	Performing
06	Develop Program using array	Performing
07	Develop Program using two dimensional arrays	Performing
08	Develop Program using structures	Performing
09	Develop Program using dynamic memory allocation	Performing
10	Develop Program using strings	
11	Develop Program using any sorting technique	
12	Develop Program using file handling.	
13	Mini project	

Recommended Books:

TEXT BOOKS:

- 1. Yashawant Kanetkar, "Let Us C", XIIIth Edition BPB Publications
- 2. E Balagurusamy, "Object Oriented Programming With C++", Mc Grow Hill

REFERENCE BOOKS:

1. Brian W. Kernighan, Dennis M. Ritchi, "The C++ Programming Language", IInd edition, Prentice Hall of India

Subject: Environmental Studies

Unit No/Name of	Lecture	Details of Syllabus Planned
Chapter No		
01	01	Definition, scope and importance of Environment.
Nature of	02	Multidisciplinary nature of environmental studies
Environmental		Need for public awareness.
Studies.	03	Concept of Sustainability. Sustainable Development &
(03 lectures)		It's goals with Indian context.

JJMCOE-SY ETC DEPT 2021-23

02	04	Introduction of Ecosystems
-	04	Introduction of Ecosystems Concept of an ecosystem.
Ecosystems (09 lectures)	05	Structure and function of an ecosystemProducers,
(09 lectures)	05	consumers and decomposers.
	06	1
		Energy flow in the ecosystem.
	07	Ecological succession.
	08	Food chains, food webs
	09	Ecological pyramids.
	10	Introduction, types, characteristics features, structure and
		function of the
		following ecosystem :-
		Forest ecosystem,
	11	Grassland ecosystem, Desert ecosystem,
	12	Aquatic ecosystems (ponds, streams, lakes). Aquatic
		ecosystems (, rivers, oceans, estuaries).
03	13	Introduction of Natural Resources. Different types of
Natural		Natural Resources. (Renewable Natural Resources and
Resources and		Non-Renewable Natural Resources)
Associated	14	Forest resources: Use and over exploitation, deforestation,
Problems		Timber extraction, mining, dams and their effects on
(08 lectures)		forests,
		,
	15	Water resources: Use and over -utilization of surface and
		ground water, Floods, drought, conflicts over water,
		dams- Benefits and problems.
	16	Mineral resources: Usage and exploitation, environmental
		effects of extracting and using mineral resources.
	18	
	17	Food Resources: World food problem, changes caused by
		agriculture effects of mode n agriculture, fertilizer -
		pesticide Problems.
	18	Energy resources: Growing energy needs, renewable
		and non- renewable energy sources, use of alternate
		energy sources.
	19	Land resources: Land as a resource, land degradation, man
		induced landslides, soil erosion and desertification.
	20	Role of an individual in conservation of natural resources.
	20	Role of an individual in conservation of natural resources.
04	21	Introduction – Definition: genetic, species and ecosystem
Biodiversity and		diversity.
it's Conservation	22	Biogeographically classification of India.
(08 lectures)	23	Value of biodiversity: consumptive use, productive use,
		social, ethical, aesthetic
	24	India as a mega-diversity nation.

JJMCOE-SY ETC DEPT 2021-23

25 Western Ghats as a bio-diversity region.		Western Ghats as a bio-diversity region. Hot-spots of		
		biodiversity		
	26	The threats to biodiversity: habitat loss, poaching of		
		wildlife, man-wildlife conflicts		
	27	Endangered and endemic species of India.		
	28	Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.		
05	29	Definition: causes, Effects and Control measures of Air		
Environmental	-	Pollution		
Pollution	30	Water Pollution		
(08 lectures)	31	Soil Pollution & Noise Pollution		
	32	Thermal Pollution and Nuclear hazards		
	33	Global warming, Acid rain		
	34	Ozone layer depletion, nuclear accidents and holocaust.		
	35	Solid waste Management (causes, Effects and Control		
	26	measures of Urban & Industrial waste)		
07	36	Role of an individual in prevention of pollution.		
06 Social Issues	37	Human population growth, impacts on environment,		
And	38	Human health and welfare		
The	39	Environmental Ethics: Role of Indian religious traditions and culture in conservation of environment.		
Environment	40			
(09 lectures)	40	Environmental movements- Chipko Movement, Appiko Movement, Silent Valley.		
(0) 10000105)	41	Resettlement and rehabilitation of people; its problems and		
		concerns.		
	42	Water conservation, rain water harvesting, watershed		
		management. water conservation		
	43	Disaster management: floods, earthquake, cyclone,		
		tsunami and landslides.		
	44	Wasteland reclamation		
	45	Environmental communication and public awareness, case		
	studies.			
07	46	Environment Protection Act, 1986.		
Environmental	47	Air (Prevention and Control of Pollution) Act, 1981		
Protection –	48	Water (Prevention and control of Pollution) Act, 1974		
Policies &	49	Wildlife Protection Act, 1972.		
Practices	50	Forest Conservation Act, 1980, National & International		
(05 lectures)		conventions and agreements on environment		
08	51	Environment Field Project Report		
Field Work	52	Visit to a local area to document environmental assets-		
	53 River/forest/grassland/hill/mountain.			
(10 lectures)	54	Or Visit to a local polluted site		
	55	Visit to a local polluted site –		
	56	Urban/Rural/Industrial/Agricultural		

JJMCOE-SY ETC DEPT 2021-23

57	or
58	Study of common plants, insects, birds.
59	or
60	Study of simple ecosystems - ponds, river, hill slopes, etc.

10. Departmental Faculty Details

Academic Year: 2022-23

Sr.No.	Name of Faculty
1	Dr.(Mrs.)S.B.Patil
2	Mr. M. M. Kolap
3	Dr.(Mrs.)S. R. Mahadik
4	Mrs. P. P. Belagali
5	Mrs. T. H. Mohite
6	Mrs. M. U. Phutane
7	Mrs. R. V. Kaulgud
8	Mr. V. T. Kamble
9	Mrs. D. U. Chavan
10	Mr. A. A. Sutar
11	Mrs. S. S. karadge

12. Department Staff:

Sr.No.	Name of Staff
1	Mr. P. K. Upadhye
2	Mr. K. M. Kulkarni
3	Mrs. H. S. Swami

12. Activity Record:

Department Activity

2022-23

Sr. No.	Name of activity / event	Planned/ conducted
1.	ElectroVision	Planned
2.	IGNITION 2k23	Planned
3.	ETESA Inauguration	Planned
4.	Engineers Day	Conducted

2021-2022				
Sr.	Name of Event/Activity	Planned / Conducted		
No.				
1	IGNITION 2k22	Planned		
2	Junior College Activity	Planned		
3	STTP on MACHINE LEARNING	Organized		
4	Welcome function for SY-ETC Students	Conducted		

JJMCOE-SY ETC DEPT 2021-23

2020-2021				
1	VandeMatram(video making contest	Conducted for all		
2	SUBH-AARAMBH(Paper presentation	Conducted for all		
	contest)			
3	NTD 2k21 Quiz contest	Conducted for all		
4	Fairwell Party BE students	Conducted for BE		
2019-2020				
1	VLSI Back End Programming	Conducted TE		
2	Python Programming	Conducted SE		
3	Arts Club Inauguration (Kalavishkar	Conducted for all		
	2k19)			
4	GD Club Inauguration	Conducted for all		
5	BOX Cricket	Conducted for all		
6	IGNITION 2k19	Conducted for Degree & Diploma studenst		
7	Colour code Activity	Conducted for SE		
8	English Spelling Activity	Conducted for TE		
9	Drishti Online Context By Texas Instrument Banglore.	Conducted for all		
10	Inauguration of EESA and IOE 2019-20	Conducted for all		
11	Industry 4.0.Workshop	Conducted for all		
12	Fresher's Party	Conducted for all		